
2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), December 12-14, Reston, VA, USA

978-1-5090-4130-5/16/$31.00 ©2016 IEEE

Deploying IoT Devices to Make Buildings Smart:

Performance Evaluation and Deployment Experience

Xiangyu Zhang, Rajendra Adhikari, Manisa Pipattanasomporn, Murat Kuzlu, and Saifur Rahman

Bradley Department of Electrical and Computer Engineering and Advanced Research Institute,

Virginia Tech, Arlington, VA, USA 22203

Abstract— This paper summarizes the authors’ work of

deploying Internet of Things (IoT) to build a reliable, cost

effective and versatile energy management system for small- and

medium-sized commercial buildings. This paper addresses

critical issues related to the choices and evaluation of embedded

systems and software optimization to enable the deployment on a

low-cost single board computer, and experience of integrating

IoT devices to enable smart building operation. It then discusses

three demonstration projects located in Virginia and summarizes

deployment experience.

Index Terms—IoT devices, Embedded System, Smart Building

I. INTRODUCTION
1

Internet of Things refers to the concept of making devices

capable of connecting to the Internet, enabling them to work

together to best serve the user. The number of Internet-capable

devices is growing and is projected to reach 6.4 billion by the

end of 2016 [1]. As a result, the proliferation of IoT enabled
scientific research has also been observed. For example,

research on IoT for smart cities is discussed in [2]. Authors in

[3] propose a multi-layer vehicular data cloud services to solve

transportation issues. Authors in [4] propose an IoT-based

method for manufacturing resources intelligent perception and

access in cloud manufacturing. As information security is also

crucially important in any IoT-based project, authors in [5] give

an overview on IoT security issues; and a lightweight key

establishment protocol suitable for home environment is

proposed in [6].

In residential and commercial buildings, IoT devices offer

opportunity to save energy by providing users with a tool to

remotely monitor and control, set schedules and provide real

time feedback on energy usage. A domestic condition

monitoring system based on low cost ubiquitous sensing
system is proposed in [7]. Authors in [8] demonstrate a HVAC

control strategy using IoT devices to minimize energy usage

considering occupant thermal comfort. A home energy

management system is proposed in [9] that can distinguish

occupant activities and control devices intelligently.

 While most previous work focuses on theoretical or

conceptual frameworks, this paper demonstrates the full

workflow of deploying IoT devices to enable smart building

operation. A brief introduction to the open source software for

building energy management deployed with IoT devices is

1 This work was supported in part by the U.S. Department of Energy under

Contract DE-EE 0006352.

presented in Section II. Evaluation of embedded system that

hosts such software is discussed in Section III. Section IV
discusses IoT device integration. Section V discusses

approaches for improving software performance on a single

board computer, and Section VI discusses the deployment

experience in three buildings.

II. BUILDING ENERGY MANAGEMENT OPEN SOURCE

SOFTWARE (BEMOSS)

Funded by the U.S. Department of Energy, Virginia Tech

has developed a Building Energy Management Open Source

Software (BEMOSS) platform, which is an open source

solution to help buildings operate more efficiently and save

energy [10]. The software platform targets small- and medium-

sized commercial buildings, up to 50,000 square feet. These

buildings constitute almost 95% of the total number of

buildings in the United States, and they do not typically have

existing building automation systems. The current release of

BEMOSS is Version 2.0 and is available on Github [11].

Built upon VOLTTRONTM, a platform developed by the

Pacific Northwest National Laboratory, BEMOSS also follows
the multi-agent structure. BEMOSS agents comprise both

system-level agents (e.g., a platform agent, a device discovery

agent, a multi-node agent, etc.) and device agents (e.g.,

thermostat agents, lighting load agents and plug load agents).

Following features are offered:

 Plug & Play: Using a dedicated device discovery agent,

one of the BEMOSS key features is its ability to

automatically discover supported devices in buildings;

 Interoperability: BEMOSS is capable of communicating

with IoT devices that use different communication

technologies and data exchange protocols; these devices

can be from different manufacturers.

 Ability for remote control and monitor: BEMOSS allows

users to monitor and control supported devices in real time

and remotely via its built-in web server.

 Cost Effectiveness: BEMOSS is designed to be light-

weight to operate on a low-cost single board computer.

 Open Source, Open Architecture: BEMOSS is designed to

have an open architecture to make it easy for hardware

manufacturers to seamlessly interface their IoT devices

with BEMOSS. Moreover, it is also designed to allow

software developers to easily contribute to the platform by

adding additional devices, functionalities and applications.

 Some of these features require considerable computation

resources, and thus might increase the hardware investment. To

enable the above merits while keeping the budget low, the

following two aspects need to be considered when designing

and deploying such a system: (i) a host machine/cloud service

should have excellent performance at a low cost; and (ii) from
the software perspective, BEMOSS should be adaptive to host

machines. These issues are discussed in Sections III and V.

III. AN EMBEDDED SYSTEM AS A BEMOSS HOST

Though cloud computing has become widely used, the

service fee is still costly. For example, the t2.small service by

Amazon Web Service EC2, which is equivalent to one virtual

CPU and 2GB memory, costs more than $200 annually for its

Linux usage charge as $0.026 per hour. Thus, to enable a cost-

effective building energy management solution, BEMOSS is

designed to run on an embedded system. As of 2016, the

number of choices of such an embedded system are

dramatically increasing. To find out the most suitable

embedded system for BEMOSS, three popular single board

computers (SBC) are selected to compare for their performance

when running BEMOSS. These SBCs are listed in Table I.

TABLE I. SINGLE BOARD COMPUTERS FOR TESTING

SBC Processor Memory Price

Odroid-XU4

CPU: ARM Cortex A15×4

@2GHz, A7×4 @1.4GHz

GPU: ARM Mali-T628 MP6

2GB $ 74.00

Cubieboard4

CC-A80

CPU: ARM Cortex A15×4

@2GHz, A7×4@1.3GHz

GPU: PowerVR G6230

2GB $ 138.00

Wandboard-

Quad

ARM Cortex A9×4@1GHz

GPU: Vivante GC 2000 + GC 355

+ GC 320

2GB $ 129.00

Both Cubieboard and Wandboard using SD cards to host

the operating system while Odroid uses the eMMC. To test

which SBC is best for BEMOSS operation, a performance test

that involves the following four test cases are designed:

a) Case 1: Only Linux OS and Virtual Network

Computing (VNC) server (for remote control) are running.

b) Case 2: Linux OS, VNC and BEMOSS (with the
webserver and databases running, but no device to monitor

and control). This case has 9 system agents.

c) Case 3: Linux OS, VNC and BEMOSS that monitors/
controls five devices. BEMOSS has the total of 14 agents

running, including nine system agents and five device agents.

d) Case 4: Linux OS, VNC and BEMOSS that monitors/

controls 20 devices. BEMOSS has the total of 29 agents

running, including nine system agents and 20 device agents.

To compare the SBCs’ loading ability, the Linux command

‘top’ is used to check the load average in the past 1 minute, 5

minutes and 15 minutes. Because the load average in 1 minute

can be volatile, the 15-minute average data are used here for

comparison. Table II summarizes this load average test result.

The percentage is acquired using measured value divided

by the board’s ability to process which can be represented by

its core number [12]. Though Odroid-XU4 and Cubieboard4

have similar specs, Cubieboard4 shows higher load average

than Odroid for the same amount of work as shown in Table II.

TABLE II. LOAD AVERAGE TEST RESULT

Test Result (Linux Load Average)

 Case 1 Case 2 Case 3 Case 4

Odroid 0.05 0.28 0.6 2.77

Cubieboard 1.24 1.59 2.61 7.67

Wandboard 0.21 0.40 1.58 4.46

Test Result (Loading Percentage)

 Case 1 Case 2 Case 3 Case 4

Odroid 0.63% 3.50% 7.50% 34.63%

Cubieboard 15.50% 19.88% 32.63% 95.88%

Wandboard 5.25% 10.00% 39.50% 111.50%

According to Phoronix Test Suite (PTS), performance of

Odroid-XU4 and Cubieboard4 is presented in Table III, higher

values in both CPU/RAM categories imply better performance.

This explains the performance difference in Table II.

Therefore, Odroid-XU4 appears to be the most powerful SBC

for hosting BEMOSS. However, it is worthwhile to point out

that this comparison is based on the scenario of running

BEMOSS and cannot be generalized to other use cases.

TABLE III. PTS BENCHMARK TEST RESULT

 Unit
Odroid-

XU4

Cubieboard4

CC-A80

CPU (Multi-core) MFLOPS* 171 158

RAM - Floating

Point Average
MB/s 4,732 3,260

 * Mega floating-point operations per second

Though Odroid has very good performance running

BEMOSS, the big RAM consumption hinders it form running

more agents. Figure 1 shows the RAM consumption in four

cases. In Case 4, where 29 agents are running in total, less than

300 MB RAM out of 2GB is available, this raises the

possibility of Cassandra database failure due to RAM shortage.

Fig. 1. Odroid RAM Usage under 4 cases

In our experience, it is a good practice to limit the number

of devices that BEMOSS monitors/controls (i.e., the number of

agents in operation) so that a free RAM of at least 400 MB is

guaranteed. Note that the BEMOSS multi-node structure is

available for accommodating more devices and enabling

system scalability. This will be discussed in Section V.

IV. SUPPORTED IOT DEVICES

BEMOSS supports a variety of IoT devices, such as smart
thermostats, lighting controllers, plug load controllers, sensors

and more. Some examples of supported IoT devices and how

they are integrated to BEMOSS are presented in this chapter.

A. Smart Thermostats

Smart thermostats are becoming increasingly popular, and

this indicates growing adoption of the smart building idea. Four

different types of Wi-Fi thermostats: Nest, Honeywell, ICM

and Radio Thermostats, have been tested in the lab. While

Radio thermostats support direct communication to the device
with their open API, other thermostats exclusively require

communication via their cloud server, which means Internet

connection is required. To work with such smart thermostats,

the following features are added to BEMOSS:

1) Abstraction using API Interface

All of the thermostats have the basic, heat set point, cool set
point and the current temperature variables. However, the

actual name of these variables as used on their screen or their

app are different. Therefore, in order to provide seamless and

uniform experience to the user, BEMOSS provides its API

translators that allow translating different commands used by

different thermostats to be commonly understood by BEMOSS.

2) BEMOSS AUTO mode

Since not all thermostats have a built-in AUTO mode,

BEMOSS provides its own AUTO mode. This AUTO mode is

necessary during shoulder seasons when day and night

temperatures vary significantly. In an AUTO mode, a user

specifies two set points, heat set point and cool set point, and

the thermostat will change the HVAC mode by itself to ensure

that the indoor temperature remains within the specified set

points. BEMOSS own AUTO mode works as follows:

At every 20 seconds,

 Get heat and cool set points from the user (through the UI)

and save them as local variables

 Compare the current temperature with those set points

 If the current temperature is less than the heat set point then

change the thermostat mode to heating, and set the set point

to the heat set point

 Else if, the current temperature is greater than the cool set

point, change the thermostat mode to cooling, and set the

set point equal to the cool set point

 Else hold on to the current mode and set point.

3) Schedule Synchronization

Different thermostats have different interfaces for handling
schedules. However, except for Nest, all thermostats support

the basic four-period-per-day schedule, i.e., awake, leave,

return and sleep. Even though, a more complex schedule could

be implemented by bringing the schedule implementation into

the BEMOSS software side, it was decided to let the device

itself handle the schedule by synching the schedule set by the

user on BEMOSS UI into the device settings. This results in

lower computational requirement for BEMOSS. Also, in case

of SBC failure, the device can still follow the schedule.

4) Anti-Tampering

Another useful add-on feature implemented for thermostats,

is the anti-tampering. In BEMOSS, an option of enabling or

disabling anti-tampering mode for each thermostat is provided.

When the anti-tampering mode is enabled, when somebody

changes settings on the device (by pressing the physical buttons

on the device, or through the thermostat app), BEMOSS will
detect the change, notify the administrator via email or text,

and change the settings back to its original value. There is also

an option to provide some allowance, default of plus or minus 2

degree Fahrenheit, so that any changes within that allowance

will not trigger anti-tampering. In case a change more than the

allowance is made, the set point will be brought back to the

original value plus or minus the allowance.

Read thermostat temperature: temp_therm
Read sensor temperature: temp_sensor

Calculate weighted Average temperature:
temp_avg = k*temp_therm + (1-k)*temp_sensor

(0<=k<=1)

Is temp_avg <
system_heat_sepoint ?

Start

Check system
mode

Is temp_avg >
system_cool_setpoint ?

Read user preferences:
k (thermostat weightage), system mode (heat,

cool, auto), system_set_points

Is temp_therm <
system_heat_sepoint ?

Set thermostat heat setpoint =
temp_therm + 1

Is temp_therm >
system_cool_sepoint ?

Set thermostat cool setpoint =
temp_therm - 1

Set thermostat heat setpoint =
system_heat_setpoint

Set thermostat cool setpoint =
system_cool_sepoint

HEAT or AUTO COOL or AUTO

End

No No

yes

yes

NoNo

Set thermostat mode = HEAT Set thermostat mode = COOL

yes

yes

Fig. 2. Flow chart of thermostat control with an external temperature sensor

5) Integrate a temperature sensor for control of large space

In some cases, a large space may require an extra

temperature sensor to provide even indoor temperature. Since

most smart thermostats available today do not support an

external temperature sensor, BEMOSS provides the feature to

pair a temperature sensor with a smart thermostat. A user

defined weight will be used to calculate the room temperature

for the control. Figure 2 shows the logic for such control.

B. Lightings

BEMOSS has been integrated with IoT-enabled lighting

devices, such as Particle Photon-driven step-dim fluorescent

lighting and Philips Hue, as discussed below.

1) Particle Photon-driven step dim fluorescent lighting.
The Particle Core/Photon is a Wi-Fi enabled IoT chip that

provides flexible API for developers to customize. In

BEMOSS, Photon has been used to control a step-dim ballast,

which drives two relays to control fluorescent lighting. It

allows the brightness to change from 0%, 50% to 100%. See

Table IV. This showcases a means to integrate legacy devices

into BEMOSS. The use case is provided below.

TABLE IV. STEP DIM BALLAST CONTROL

Two Switches Condition Power

(0, 0) 0%

(0, 1) or (1, 0) 50%

(1, 1) 100%

a) Use Case:

In a classroom with large windows, when nature light is

sufficient, indoor lights can be dimmed to 50% to save energy.

b) Hardware:

Four IO pins of Photon are used to drive four relays of

Particle relay shield. These four relays are used to control two

fixtures of florescent lights, two for each.

c) Software – Customizing Particle App:

Particle provides an open API builder (build.particle.io)

which enable developers to customize the app runs on Photon.

In order to discover/control/monitor lighting devices for

BEMOSS, a self-defined app with six cloud variables and three

functions are developed. See Table V.

TABLE V. PARTICLE APP FOR STEP DIM BALLAST CONTROL

Variables Description

DZERO Value of ‘D0’ pin, 0 for low and 1 for high Value can be

changed by

setVariable

function.

DONE Value of ‘D1’ pin, 0 for low and 1 for high

DTWO Value of ‘D2’ pin, 0 for low and 1 for high

DTHREE Value of ‘D3’ pin, 0 for low and 1 for high

ipString IP Address of this Particle device

macString MAC Address of this Particle device

Functions Description

setup
Initialize variables, acquire IP/MAC

address.

Execute

when start

setVariable
Used to set value to variables, such as

DZERO

Called by

API function

‘setResult’

digitalWrite
Change the output of Particle device

output pins

Called by

API function

‘digitalwrite’

Variables ‘ipString’ and ‘macString’ are used for BEMOSS
to identify which Photon chip to control and the rest of the

cloud variables represents the status of four IO pins.

Function ‘digitalWrite’ is responsible for setting IO pin
status; ‘setVariable’ is used to change the status of cloud

variable, namely record the IO pin status in the cloud. This

allows BEMOSS to know the device status at any time. App

can be flashed to the chip through the Particle App portal.

For BEMOSS (python-based) to communicate with the

device, an API interface is developed to allow discovery,

control and monitor of the Photon-based lighting system. Such

API is modified based on Alidron/spyrk from GitHub [13].

This enables Photon discovery and allows BEMOSS to call all

self-defined functions mentioned above.

2) Philips Hue.
Philips Hue is a set of LED light bulbs with a bridge that

allows a user to control brightness and color wirelessly. Both

2012 and 2015 versions of Philips Hue hubs have been
integrated to BEMOSS. With the help of the RESTful API,

BEMOSS can easily check the status of the device, turn

ON/OFF the device, change the brightness, set lighting

operating schedule, change the bulb color and retrieve

historical usage information through BEMOSS UI.

C. Other IoT devices

BEMOSS can also be integrated with a customized wireless

temperature sensor developed using Raspberry Pi and a one-

wire digital temperature sensor [14]. The temperature sensor
would be connected to one of the Raspberry Pi GPIO pin and

the Pi would communicate using one-wire protocol to get the

temperature data. See Figure 4.

Fig. 3. Temperature sensor made from Raspberry Pi

This Pi and the sensor together can act as a Wi-Fi

temperature sensor that can be placed at a desired location.

Whenever BEMOSS needs to get sensor readings, it can simply

communicate with the Pi through a Wi-Fi network. This can be

achieved by running a primitive web-server on the Pi, which

can respond to a temperature reading query on its TCP/IP

address. The capacity to support these kinds of customized IoT

devices can certainly help bring the deployment cost down.

V. BEMOSS PERFORMANCE IMPROVEMENT

This section discusses three techniques implemented to

make BEMOSS suitable for deployment on SBCs.

A. Data Saving Technique

Considering the limited storage on Odroid, a data filtering

technique is implemented to save disk space by reducing the

number of unnecessary data entries. Taking advantage of the

NoSQL database, BEMOSS only saves data points that are

different from their previous stages. This results in a

considerable disk space saving. Take the example below,

where data for a thermostat are saved only when they change.

Assuming that change rates are:

–Temperature change: every 3 minutes

–Battery level change: every 10 minutes

–Set point change: every 2 hours

–Thermostat mode change: every week

With these rate and with data filtering implemented,

0.74MB of disk space will be consumed per month for a single

device. On the other hand if no data-filtering is employed it

will take 13.4MB per month. This indicates the savings of 95%

disk space in a month.

In addition, runtime experiments are also conducted: three

instances of BEMOSS is running with different number and

types of smart devices, the average data increment speed

(KB/hr) is summarized in Table VI. It is worthwhile to point
out that the data increment speed varies according to the types

and number of IoT device monitored and controlled by

BEMOSS. Different devices record different number of data

points at different intervals. According to Table VI, none of

these three scenarios demonstrates an extremely high data

generating speed. Thus, this shows that after the

implementation of such filtering mechanism, the problem of

storage limit in Odroid is mitigated. That is, it will take

between 3,927-173,032 days (or 10-474 years) to fill 20 GB

out of a 32 GB eMMC when BEMOSS monitors and controls

6-15 devices simultaneously.

TABLE VI. DATA INCREMENT SPEED

BEMOSS Instance 1 2 3

Number of devices 15 6 13

Average data increment (KB/hr) 159.60 5.05 222.50

Days to fill up 20 GB: 5475 173032 3927

In BEMOSS, a custom function is used to detect the

change, because variables like the power in power meter, or the

light illuminance in ambient light sensor can change slightly

(less than 0.5%) every device monitoring time because of the

noise in the system. Hence, a tolerance is defined and any

changes below the tolerance are discarded as irrelevant. Also as

a fallback procedure, the data is saved in database at every 15

minutes even if nothing is changed.

B. Agents Hibernation

In order to support BEMOSS plug and play functionality,

an agent exists on BEMOSS to broadcast discovery messages

on the network, or ping a range of IP addresses. However, after

the initial surge of discovery, the process is repeated with

increasingly less frequency, so that no valuable computational

power is wasted for always trying to discover devices. Instead,

manual discovery is employed. That is, once the initial

discovery process is finished, and if the user needs to

immediately discover some newly added device, a discovery

command can be issued to look for the particular kind of device
added. This is instead of scanning for the whole range of

supported devices all the time.

In addition, the data filtering mechanism mentioned above
also relieves all device agents from doing unnecessary logging

and thus reducing the Odroid’s burden.

C. Multi-node Structure

Even with various measures taken to reduce resource

consumption there is a limit on how many devices can be

supported by a single SBC, as pointed out in Section III. In

order to cope with scenarios where the number of IoT devices

exceeding the limit of a single SBC, a robust master-slave

multi-node architecture is introduced to facilitate this

scalability issue. The master node hosts the webserver and is

responsible for keeping track of slave nodes. Any device agents

can be migrated between various nodes to properly balance the

resource consumption among them. Since the core and nodes
all reside on the same network, the information about the

device access location (IP address and ports) can be freely

shared between them (via encrypted communication among

them). The benefit is that the discovery process do not need

start again when device agents are migrated. Also, any

authentication credentials to access the devices can be shared.

As for saving time series data, while it is possible to have only

one database server running on the master, and have all agents

of the slave nodes connect to that server, it is not the best

solution in terms of reliability and speed. Instead, Cassandra

distributed database system is used, with each node hosting one

instance (node) of the database server, and each device agent
connecting to the database server on its own node. Due to the

transparently distributed nature of the database, and the option

of having data replication, any data saved by device agent on

any node, is always available everywhere. The web server on

the master node can connect to the database server on the

master node, and still be able to show the chart of historical

usage of various device agents. Also, having data replication

ensures that even if one of the node is damaged or becomes

out-of-service, none of the data is lost.

VI. DEPLOYMENT AND OPERATION

After Odroid XU4 has been installed with BEMOSS, it can

be taken to the building for deployment. Currently, the

BEMOSS platform has been deployed in three buildings

located in Alexandria, Arlington and Blacksburg, Virginia with

the longest operation time of more than one year.

A. Consideration for on-site Deployment

1) Security:
BEMOSS requires password authentication to log in, and

only the ‘Admin’ and ‘Zone Manager’ roles can conduct

corresponding control. All control activities can be logged for

future reference. Physically, the Odroid is locked in a NEMA

box in an electrical room with minimum access to tenants.

2) Maintenance:
Remote access is enabled for maintenance such as

BEMOSS code update to eliminate the need to visit the

building. Depending on the type of the building network, port

forwarding and VPN might be needed. Little maintenance is
needed for Odroid. As shown in Table VI, storage is abundant,

thus eliminating the need to access Odroid physically.

3) Reliability:
Thanks to the multi-node structure that allows agents to be

allocated among core and nodes, this adds an extra reliability

by allowing the BEMOSS core to take over the monitoring and

control of smart device operation when a node fails. In

addition, BEMOSS is designed to cope with situations such as

power outage contingency. When a building recovers from a

power outage, Odroid will automatically boot up and start

BEMOSS to resume its job with zero human interference.

Similarly, a watchdog can be implemented in case of

occasional system failure.

B. Benefits of Integrating IoT Devices to Enable Smart

Building Operation

By using BEMOSS that enables integration with IoT

devices, building operators can enjoy:

 Accessibility: Remotely control any connected device in a

building from anywhere using smart phone, tablet, laptop,

etc. Figure 4 shows BEMOSS dashboard that display status

of all devices ;

Fig. 4. BEMOSS Dashboard

 Automation: Set schedule and provide automation of

device operations in buildings. A good example is the

BEMOSS ability to respond to the OpenADR signal from

electricity utility, and manage load shedding automatically;

 Visualization: Provide access to historical data in graphical

formats. This enables the easy-to-analyze display of device

operational data. Figure 5 shows an example of the power

consumption heat map of rooftop units (RTUs) in one of

the demonstration building a period of about five weeks.

Fig. 5. Example of building operation power consumption heat map. X-axis

represents time of the day; Y-axis represents dates in May 2016.

VII. CONCLUSION

This paper presents an example of how IoT devices can be

integrated with an open source BEM systems to enable smart

building operation. Specifically, BEMOSS, an open source

BEM platform, is able to run on a SBC such as Odroid to

control and monitor IoT devices in buildings. This provides a

low cost and powerful solution for managing building

operation, thus potentially enabling energy savings in

commercial buildings for the first time. Test and evaluation of

deploying BEMOSS on several SBCs show the Odroid XU4 is

the most suitable embedded system for this application.

Experience with IoT device integration and system deployment

is summarized in this paper, which can serve as reference and

guidance for future research and similar real-world

implementations.

REFERENCES

[1] Gartner, (2015, November) “Gartner Says 6.4 Billion Connected
"Things" Will Be in Use in 2016, Up 30 Percent From 2015”.
[Online]. Available: www.gartner.com/newsroom/id/3165317.

[2] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi.
"Internet of things for smart cities." IEEE Trans. on Internet of

Things, vol. 1, no. 1, pp. 22-32, Feb 2014.

[3] W. He, G. Yan, and L. Xu. "Developing vehicular data cloud
services in the IoT environment." IEEE Trans. on Industrial
Informatics, vol. 10, no. 2, pp. 1587-1595, May 2014.

[4] F. Tao, Y. Zuo, L. Xu, and L. Zhang. "IoT-based intelligent
perception and access of manufacturing resource toward cloud
manufacturing." IEEE Trans. on Industrial Informatics, vol. 10,
no. 2, pp. 1547-1557, May 2014.

[5] S. Babar, P. Mahalle, A. Stango, N. Prasad, and R. Prasad.
"Proposed security model and threat taxonomy for the Internet
of Things (IoT)." In International Conference on Network
Security and Applications, pp. 420-429. Springer Berlin
Heidelberg, 2010.

[6] Y. Li. "Design of a key establishment protocol for smart home
energy management system." 2013 Fifth International
Conference on Computational Intelligence, Communication
Systems and Networks (CICSyN), Madrid, 2013, pp. 88-93.

[7] S. Kelly, N. Suryadevara, and S. Mukhopadhyay. "Towards the
implementation of IoT for environmental condition monitoring
in homes." IEEE Sensors Journal, vol. 13, no.10, pp. 3846-3853,
May 2013.

[8] J. Serra, D. Pubill, A. Antonopoulos, and C. Verikoukis. "Smart
HVAC control in IoT: Energy consumption minimization with
user comfort constraints." The Scientific World Journal, vol.
2014, pp. 1-11, June, 2014.

[9] Cho, Wei-Ting, Ying-Xun Lai, Chin-Feng Lai, and Yueh-Min
Huang. "Appliance-aware activity recognition mechanism for
IoT energy management system." The Computer Journal, May
2013.

[10] W. Khamphanchai, A. Saha, K. Rathinavel, M. Kuzlu, M.

Pipattanasomporn, S. Rahman, B. Akyol, and J. Haack.
"Conceptual architecture of building energy management open
source software (BEMOSS)." In IEEE PES Innovative Smart
Grid Technologies, Europe, Istanbul, Turkey, 2014, pp. 1-6.

[11] Source code for BEMOSS. [Online]. Available:

https://github.com/bemoss/bemoss_os

[12] Gunther, Neil J. "Linux Load Average." Analyzing Computer
System Performance with Perl PDQ. Springer Berlin
Heidelberg, 2011. 215-238.

[13] Source code for Particle API. [Online]. Available:
https://github.com/Alidron/spyrk

[14] Monitor your home temperature using your Raspberry Pi.
[Online]. Available:
http://projects.privateeyepi.com/home/temperature-gauge

