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Abstract— This paper summarizes the authors’ work of 

deploying Internet of Things (IoT) to build a reliable, cost 

effective and versatile energy management system for small- and 

medium-sized commercial buildings. This paper addresses 

critical issues related to the choices and evaluation of embedded 

systems and software optimization to enable the deployment on a 

low-cost single board computer, and experience of integrating 

IoT devices to enable smart building operation. It then discusses 

three demonstration projects located in Virginia and summarizes 

deployment experience. 

Index Terms—IoT devices, Embedded System, Smart Building 

I. INTRODUCTION 
1 

Internet of Things refers to the concept of making devices 

capable of connecting to the Internet, enabling them to work 

together to best serve the user. The number of Internet-capable 

devices is growing and is projected to reach 6.4 billion by the 

end of 2016 [1]. As a result, the proliferation of IoT enabled 
scientific research has also been observed. For example, 

research on IoT for smart cities is discussed in [2]. Authors in 

[3] propose a multi-layer vehicular data cloud services to solve 

transportation issues. Authors in [4] propose an IoT-based 

method for manufacturing resources intelligent perception and 

access in cloud manufacturing. As information security is also 

crucially important in any IoT-based project, authors in [5] give 

an overview on IoT security issues; and a lightweight key 

establishment protocol suitable for home environment is 

proposed in [6]. 

In residential and commercial buildings, IoT devices offer 

opportunity to save energy by providing users with a tool to 

remotely monitor and control, set schedules and provide real 

time feedback on energy usage. A domestic condition 

monitoring system based on low cost ubiquitous sensing 
system is proposed in [7]. Authors in [8] demonstrate a HVAC 

control strategy using IoT devices to minimize energy usage 

considering occupant thermal comfort. A home energy 

management system is proposed in [9] that can distinguish 

occupant activities and control devices intelligently. 

 While most previous work focuses on theoretical or 

conceptual frameworks, this paper demonstrates the full 

workflow of deploying IoT devices to enable smart building 

operation. A brief introduction to the open source software for 

building energy management deployed with IoT devices is 
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presented in Section II. Evaluation of embedded system that 

hosts such software is discussed in Section III. Section IV 
discusses IoT device integration. Section V discusses 

approaches for improving software performance on a single 

board computer, and Section VI discusses the deployment 

experience in three buildings. 

II. BUILDING ENERGY MANAGEMENT OPEN SOURCE 

SOFTWARE (BEMOSS) 

Funded by the U.S. Department of Energy, Virginia Tech 

has developed a Building Energy Management Open Source 

Software (BEMOSS) platform, which is an open source 

solution to help buildings operate more efficiently and save 

energy [10]. The software platform targets small- and medium-

sized commercial buildings, up to 50,000 square feet. These 

buildings constitute almost 95% of the total number of 

buildings in the United States, and they do not typically have 

existing building automation systems. The current release of 

BEMOSS is Version 2.0 and is available on Github [11].   

Built upon VOLTTRONTM, a platform developed by the 

Pacific Northwest National Laboratory, BEMOSS also follows 
the multi-agent structure. BEMOSS agents comprise both 

system-level agents (e.g., a platform agent, a device discovery 

agent, a multi-node agent, etc.) and device agents (e.g., 

thermostat agents, lighting load agents and plug load agents). 

Following features are offered: 

 Plug & Play: Using a dedicated device discovery agent, 

one of the BEMOSS key features is its ability to 

automatically discover supported devices in buildings; 

 Interoperability: BEMOSS is capable of communicating 

with IoT devices that use different communication 

technologies and data exchange protocols; these devices 

can be from different manufacturers. 

 Ability for remote control and monitor: BEMOSS allows 

users to monitor and control supported devices in real time 

and remotely via its built-in web server. 

 Cost Effectiveness: BEMOSS is designed to be light-

weight to operate on a low-cost single board computer.  

 Open Source, Open Architecture: BEMOSS is designed to 

have an open architecture to make it easy for hardware 

manufacturers to seamlessly interface their IoT devices 

with BEMOSS. Moreover, it is also designed to allow 

software developers to easily contribute to the platform by 

adding additional devices, functionalities and applications. 



 

 

       Some of these features require considerable computation 

resources, and thus might increase the hardware investment. To 

enable the above merits while keeping the budget low, the 

following two aspects need to be considered when designing 

and deploying such a system: (i) a host machine/cloud service 

should have excellent performance at a low cost; and (ii) from 
the software perspective, BEMOSS should be adaptive to host 

machines. These issues are discussed in Sections III and V. 

III. AN EMBEDDED SYSTEM AS A BEMOSS HOST 

Though cloud computing has become widely used, the 

service fee is still costly. For example, the t2.small service by 

Amazon Web Service EC2, which is equivalent to one virtual 

CPU and 2GB memory, costs more than $200 annually for its 

Linux usage charge as $0.026 per hour. Thus, to enable a cost-

effective building energy management solution, BEMOSS is 

designed to run on an embedded system. As of 2016, the 

number of choices of such an embedded system are 

dramatically increasing. To find out the most suitable 

embedded system for BEMOSS, three popular single board 

computers (SBC) are selected to compare for their performance 

when running BEMOSS. These SBCs are listed in Table I. 

TABLE I.  SINGLE BOARD COMPUTERS FOR TESTING 

SBC Processor Memory Price 

Odroid-XU4 

CPU: ARM Cortex A15×4 

@2GHz, A7×4 @1.4GHz 

GPU: ARM Mali-T628 MP6 

2GB $ 74.00 

Cubieboard4 

CC-A80 

CPU: ARM Cortex A15×4 

@2GHz, A7×4@1.3GHz 

GPU: PowerVR G6230 

2GB $ 138.00 

Wandboard-

Quad 

ARM Cortex A9×4@1GHz 

GPU: Vivante GC 2000 + GC 355 

+ GC 320 

2GB $ 129.00 

 

Both Cubieboard and Wandboard using SD cards to host 

the operating system while Odroid uses the eMMC. To test 

which SBC is best for BEMOSS operation, a performance test 

that involves the following four test cases are designed: 

a) Case 1: Only Linux OS and Virtual Network 

Computing (VNC) server (for remote control) are running. 

b) Case 2: Linux OS, VNC and BEMOSS (with the 
webserver and databases running, but no device to monitor 

and control). This case has 9 system agents. 

c) Case 3: Linux OS, VNC and BEMOSS that monitors/ 
controls five devices. BEMOSS has the total of 14 agents 

running, including nine system agents and five device agents. 

d) Case 4: Linux OS, VNC and BEMOSS that monitors/ 

controls 20 devices. BEMOSS has the total of 29 agents 

running, including nine system agents and 20 device agents.  

To compare the SBCs’ loading ability, the Linux command 

‘top’ is used to check the load average in the past 1 minute, 5 

minutes and 15 minutes. Because the load average in 1 minute 

can be volatile, the 15-minute average data are used here for 

comparison. Table II summarizes this load average test result. 

The percentage is acquired using measured value divided 

by the board’s ability to process which can be represented by 

its core number [12]. Though Odroid-XU4 and Cubieboard4 

have similar specs, Cubieboard4 shows higher load average 

than Odroid for the same amount of work as shown in Table II.  

TABLE II.  LOAD AVERAGE TEST RESULT 

Test Result (Linux Load Average) 

 Case 1 Case 2 Case 3 Case 4 

Odroid 0.05 0.28 0.6 2.77 

Cubieboard 1.24 1.59 2.61 7.67 

Wandboard 0.21 0.40 1.58 4.46 

Test Result (Loading Percentage) 

 Case 1 Case 2 Case 3 Case 4 

Odroid 0.63% 3.50% 7.50% 34.63% 

Cubieboard 15.50% 19.88% 32.63% 95.88% 

Wandboard 5.25% 10.00% 39.50% 111.50% 

 

According to Phoronix Test Suite (PTS), performance of 

Odroid-XU4 and Cubieboard4 is presented in Table III, higher 

values in both CPU/RAM categories imply better performance. 

This explains the performance difference in Table II. 

Therefore, Odroid-XU4 appears to be the most powerful SBC 

for hosting BEMOSS. However, it is worthwhile to point out 

that this comparison is based on the scenario of running 

BEMOSS and cannot be generalized to other use cases. 

TABLE III.  PTS BENCHMARK TEST RESULT 

 Unit 
Odroid-

XU4 

Cubieboard4 

CC-A80 

CPU (Multi-core) MFLOPS* 171 158 

RAM - Floating 

Point Average  
MB/s 4,732 3,260 

       * Mega floating-point operations per second 
 

Though Odroid has very good performance running 

BEMOSS, the big RAM consumption hinders it form running 

more agents. Figure 1 shows the RAM consumption in four 

cases. In Case 4, where 29 agents are running in total, less than 

300 MB RAM out of 2GB is available, this raises the 

possibility of Cassandra database failure due to RAM shortage.  

 
Fig. 1.  Odroid RAM Usage under 4 cases  

In our experience, it is a good practice to limit the number 

of devices that BEMOSS monitors/controls (i.e., the number of 

agents in operation) so that a free RAM of at least 400 MB is 

guaranteed. Note that the BEMOSS multi-node structure is 

available for accommodating more devices and enabling 

system scalability. This will be discussed in Section V. 



 

 

IV. SUPPORTED IOT DEVICES 

BEMOSS supports a variety of IoT devices, such as smart 
thermostats, lighting controllers, plug load controllers, sensors 

and more. Some examples of supported IoT devices and how 

they are integrated to BEMOSS are presented in this chapter. 

A. Smart Thermostats 

Smart thermostats are becoming increasingly popular, and 

this indicates growing adoption of the smart building idea. Four 

different types of Wi-Fi thermostats: Nest, Honeywell, ICM 

and Radio Thermostats, have been tested in the lab. While 

Radio thermostats support direct communication to the device 
with their open API, other thermostats exclusively require 

communication via their cloud server, which means Internet 

connection is required. To work with such smart thermostats, 

the following features are added to BEMOSS: 

1) Abstraction using API Interface 

All of the thermostats have the basic, heat set point, cool set 
point and the current temperature variables. However, the 

actual name of these variables as used on their screen or their 

app are different. Therefore, in order to provide seamless and 

uniform experience to the user, BEMOSS provides its API 

translators that allow translating different commands used by 

different thermostats to be commonly understood by BEMOSS. 

2) BEMOSS AUTO mode 

Since not all thermostats have a built-in AUTO mode, 

BEMOSS provides its own AUTO mode. This AUTO mode is 

necessary during shoulder seasons when day and night 

temperatures vary significantly. In an AUTO mode, a user 

specifies two set points, heat set point and cool set point, and 

the thermostat will change the HVAC mode by itself to ensure 

that the indoor temperature remains within the specified set 

points. BEMOSS own AUTO mode works as follows:  

At every 20 seconds,  

 Get heat and cool set points from the user (through the UI) 

and save them as local variables 

 Compare the current temperature with those set points 

 If the current temperature is less than the heat set point then 

change the thermostat mode to heating, and set the set point 

to the heat set point 

 Else if, the current temperature is greater than the cool set 

point, change the thermostat mode to cooling, and set the 

set point equal to the cool set point 

 Else hold on to the current mode and set point. 

3) Schedule Synchronization 

Different thermostats have different interfaces for handling 
schedules. However, except for Nest, all thermostats support 

the basic four-period-per-day schedule, i.e., awake, leave, 

return and sleep. Even though, a more complex schedule could 

be implemented by bringing the schedule implementation into 

the BEMOSS software side, it was decided to let the device 

itself handle the schedule by synching the schedule set by the 

user on BEMOSS UI into the device settings. This results in 

lower computational requirement for BEMOSS. Also, in case 

of SBC failure, the device can still follow the schedule.  

4) Anti-Tampering 

Another useful add-on feature implemented for thermostats, 

is the anti-tampering. In BEMOSS, an option of enabling or 

disabling anti-tampering mode for each thermostat is provided. 

When the anti-tampering mode is enabled, when somebody 

changes settings on the device (by pressing the physical buttons 

on the device, or through the thermostat app), BEMOSS will 
detect the change, notify the administrator via email or text, 

and change the settings back to its original value. There is also 

an option to provide some allowance, default of plus or minus 2 

degree Fahrenheit, so that any changes within that allowance 

will not trigger anti-tampering. In case a change more than the 

allowance is made, the set point will be brought back to the 

original value plus or minus the allowance.  

 

Read thermostat temperature: temp_therm
Read sensor temperature: temp_sensor

Calculate weighted Average temperature:
temp_avg = k*temp_therm + (1-k)*temp_sensor
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Check system 
mode

Is temp_avg > 
system_cool_setpoint ?
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k (thermostat weightage), system mode (heat, 
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temp_therm + 1
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system_cool_sepoint ?

Set thermostat cool setpoint = 
temp_therm - 1

Set thermostat heat setpoint = 
system_heat_setpoint
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End

No No
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Fig. 2.  Flow chart of thermostat control with an external temperature sensor  

5) Integrate a temperature sensor for control of large space 

In some cases, a large space may require an extra 

temperature sensor to provide even indoor temperature. Since 

most smart thermostats available today do not support an 

external temperature sensor, BEMOSS provides the feature to 

pair a temperature sensor with a smart thermostat. A user 

defined weight will be used to calculate the room temperature 

for the control. Figure 2 shows the logic for such control. 



 

 

B. Lightings 

BEMOSS has been integrated with IoT-enabled lighting 

devices, such as Particle Photon-driven step-dim fluorescent 

lighting and Philips Hue, as discussed below. 

1) Particle Photon-driven step dim fluorescent lighting. 
The Particle Core/Photon is a Wi-Fi enabled IoT chip that 

provides flexible API for developers to customize. In 

BEMOSS, Photon has been used to control a step-dim ballast, 

which drives two relays to control fluorescent lighting. It 

allows the brightness to change from 0%, 50% to 100%. See 

Table IV. This showcases a means to integrate legacy devices 

into BEMOSS. The use case is provided below. 

TABLE IV.  STEP DIM BALLAST CONTROL 

Two Switches Condition Power 

(0, 0) 0% 

(0, 1) or (1, 0) 50% 

(1, 1) 100% 

 

a) Use Case: 

In a classroom with large windows, when nature light is 

sufficient, indoor lights can be dimmed to 50% to save energy.  

b) Hardware: 

Four IO pins of Photon are used to drive four relays of 

Particle relay shield. These four relays are used to control two 

fixtures of florescent lights, two for each.  

c) Software – Customizing Particle App: 

Particle provides an open API builder (build.particle.io) 

which enable developers to customize the app runs on Photon. 

In order to discover/control/monitor lighting devices for 

BEMOSS, a self-defined app with six cloud variables and three 

functions are developed. See Table V. 

TABLE V.  PARTICLE APP FOR STEP DIM BALLAST CONTROL 

Variables Description  

DZERO Value of ‘D0’ pin, 0 for low and 1 for high Value can be 

changed by 

setVariable 

function. 

DONE Value of ‘D1’ pin, 0 for low and 1 for high 

DTWO Value of ‘D2’ pin, 0 for low and 1 for high 

DTHREE Value of ‘D3’ pin, 0 for low and 1 for high 

ipString IP Address of this Particle device  

macString MAC Address of this Particle device  

Functions Description  

setup 
Initialize variables, acquire IP/MAC 

address. 

Execute 

when start 

setVariable 
Used to set value to variables, such as 

DZERO 

Called by 

API function 

‘setResult’ 

digitalWrite 
Change the output of Particle device 

output pins 

Called by 

API function 

‘digitalwrite’ 
 

Variables ‘ipString’ and ‘macString’ are used for BEMOSS 
to identify which Photon chip to control and the rest of the 

cloud variables represents the status of four IO pins.  

Function ‘digitalWrite’ is responsible for setting IO pin 
status; ‘setVariable’ is used to change the status of cloud 

variable, namely record the IO pin status in the cloud. This 

allows BEMOSS to know the device status at any time. App 

can be flashed to the chip through the Particle App portal. 

For BEMOSS (python-based) to communicate with the 

device, an API interface is developed to allow discovery, 

control and monitor of the Photon-based lighting system. Such 

API is modified based on Alidron/spyrk from GitHub [13]. 

This enables Photon discovery and allows BEMOSS to call all 

self-defined functions mentioned above. 

2) Philips Hue. 
Philips Hue is a set of LED light bulbs with a bridge that 

allows a user to control brightness and color wirelessly. Both 

2012 and 2015 versions of Philips Hue hubs have been 
integrated to BEMOSS. With the help of the RESTful API, 

BEMOSS can easily check the status of the device, turn 

ON/OFF the device, change the brightness, set lighting 

operating schedule, change the bulb color and retrieve 

historical usage information through BEMOSS UI. 

C. Other IoT devices 

BEMOSS can also be integrated with a customized wireless 

temperature sensor developed using Raspberry Pi and a one-

wire digital temperature sensor [14]. The temperature sensor 
would be connected to one of the Raspberry Pi GPIO pin and 

the Pi would communicate using one-wire protocol to get the 

temperature data. See Figure 4. 

 

 

Fig. 3.  Temperature sensor made from Raspberry Pi 

This Pi and the sensor together can act as a Wi-Fi 

temperature sensor that can be placed at a desired location. 

Whenever BEMOSS needs to get sensor readings, it can simply 

communicate with the Pi through a Wi-Fi network. This can be 

achieved by running a primitive web-server on the Pi, which 

can respond to a temperature reading query on its TCP/IP 

address. The capacity to support these kinds of customized IoT 

devices can certainly help bring the deployment cost down.  

V. BEMOSS PERFORMANCE IMPROVEMENT 

This section discusses three techniques implemented to 

make BEMOSS suitable for deployment on SBCs. 

A. Data Saving Technique 

Considering the limited storage on Odroid, a data filtering 

technique is implemented to save disk space by reducing the 

number of unnecessary data entries. Taking advantage of the 

NoSQL database, BEMOSS only saves data points that are 

different from their previous stages. This results in a 

considerable disk space saving. Take the example below, 

where data for a thermostat are saved only when they change. 

Assuming that change rates are:  

–Temperature change: every 3 minutes 

–Battery level change: every 10 minutes 

–Set point change: every 2 hours 

–Thermostat mode change: every week 



 

 

With these rate and with data filtering implemented, 

0.74MB of disk space will be consumed per month for a single 

device. On the other hand if no data-filtering is employed it 

will take 13.4MB per month. This indicates the savings of 95% 

disk space in a month. 

In addition, runtime experiments are also conducted: three 

instances of BEMOSS is running with different number and 

types of smart devices, the average data increment speed 

(KB/hr) is summarized in Table VI. It is worthwhile to point 
out that the data increment speed varies according to the types 

and number of IoT device monitored and controlled by 

BEMOSS. Different devices record different number of data 

points at different intervals. According to Table VI, none of 

these three scenarios demonstrates an extremely high data 

generating speed. Thus, this shows that after the 

implementation of such filtering mechanism, the problem of 

storage limit in Odroid is mitigated. That is, it will take 

between 3,927-173,032 days (or 10-474 years) to fill 20 GB 

out of a 32 GB eMMC when BEMOSS monitors and controls 

6-15 devices simultaneously. 

TABLE VI.  DATA INCREMENT SPEED 

BEMOSS Instance 1 2 3 

Number of devices 15 6 13 

Average data increment (KB/hr) 159.60 5.05 222.50 

Days to fill up 20 GB: 5475 173032 3927 

 

In BEMOSS, a custom function is used to detect the 

change, because variables like the power in power meter, or the 

light illuminance in ambient light sensor can change slightly 

(less than 0.5%) every device monitoring time because of the 

noise in the system. Hence, a tolerance is defined and any 

changes below the tolerance are discarded as irrelevant. Also as 

a fallback procedure, the data is saved in database at every 15 

minutes even if nothing is changed.  

B. Agents Hibernation 

In order to support BEMOSS plug and play functionality, 

an agent exists on BEMOSS to broadcast discovery messages 

on the network, or ping a range of IP addresses. However, after 

the initial surge of discovery, the process is repeated with 

increasingly less frequency, so that no valuable computational 

power is wasted for always trying to discover devices. Instead, 

manual discovery is employed. That is, once the initial 

discovery process is finished, and if the user needs to 

immediately discover some newly added device, a discovery 

command can be issued to look for the particular kind of device 
added. This is instead of scanning for the whole range of 

supported devices all the time.  

In addition, the data filtering mechanism mentioned above 
also relieves all device agents from doing unnecessary logging 

and thus reducing the Odroid’s burden. 

C. Multi-node Structure 

Even with various measures taken to reduce resource 

consumption there is a limit on how many devices can be 

supported by a single SBC, as pointed out in Section III. In 

order to cope with scenarios where the number of IoT devices 

exceeding the limit of a single SBC, a robust master-slave 

multi-node architecture is introduced to facilitate this 

scalability issue. The master node hosts the webserver and is 

responsible for keeping track of slave nodes. Any device agents 

can be migrated between various nodes to properly balance the 

resource consumption among them. Since the core and nodes 
all reside on the same network, the information about the 

device access location (IP address and ports) can be freely 

shared between them (via encrypted communication among 

them). The benefit is that the discovery process do not need 

start again when device agents are migrated. Also, any 

authentication credentials to access the devices can be shared. 

As for saving time series data, while it is possible to have only 

one database server running on the master, and have all agents 

of the slave nodes connect to that server, it is not the best 

solution in terms of reliability and speed. Instead, Cassandra 

distributed database system is used, with each node hosting one 

instance (node) of the database server, and each device agent 
connecting to the database server on its own node. Due to the 

transparently distributed nature of the database, and the option 

of having data replication, any data saved by device agent on 

any node, is always available everywhere. The web server on 

the master node can connect to the database server on the 

master node, and still be able to show the chart of historical 

usage of various device agents. Also, having data replication 

ensures that even if one of the node is damaged or becomes 

out-of-service, none of the data is lost. 

VI.  DEPLOYMENT AND OPERATION 

After Odroid XU4 has been installed with BEMOSS, it can 

be taken to the building for deployment. Currently, the 

BEMOSS platform has been deployed in three buildings 

located in Alexandria, Arlington and Blacksburg, Virginia with 

the longest operation time of more than one year.  

A. Consideration for on-site Deployment 

1) Security: 
BEMOSS requires password authentication to log in, and 

only the ‘Admin’ and ‘Zone Manager’ roles can conduct 

corresponding control. All control activities can be logged for 

future reference. Physically, the Odroid is locked in a NEMA 

box in an electrical room with minimum access to tenants.  

2) Maintenance: 
Remote access is enabled for maintenance such as 

BEMOSS code update to eliminate the need to visit the 

building. Depending on the type of the building network, port 

forwarding and VPN might be needed. Little maintenance is 
needed for Odroid. As shown in Table VI, storage is abundant, 

thus eliminating the need to access Odroid physically.  

3) Reliability: 
Thanks to the multi-node structure that allows agents to be 

allocated among core and nodes, this adds an extra reliability 

by allowing the BEMOSS core to take over the monitoring and 

control of smart device operation when a node fails. In 

addition, BEMOSS is designed to cope with situations such as 

power outage contingency. When a building recovers from a 

power outage, Odroid will automatically boot up and start 



 

 

BEMOSS to resume its job with zero human interference. 

Similarly, a watchdog can be implemented in case of 

occasional system failure. 

B. Benefits of Integrating IoT Devices to Enable Smart 

Building Operation 

By using BEMOSS that enables integration with IoT 

devices, building operators can enjoy: 

 Accessibility: Remotely control any connected device in a 

building from anywhere using smart phone, tablet, laptop, 

etc. Figure 4 shows BEMOSS dashboard that display status 

of all devices ; 

 
Fig. 4.  BEMOSS Dashboard 

 Automation: Set schedule and provide automation of 

device operations in buildings. A good example is the 

BEMOSS ability to respond to the OpenADR signal from 

electricity utility, and manage load shedding automatically; 

 Visualization: Provide access to historical data in graphical 

formats. This enables the easy-to-analyze display of device 

operational data. Figure 5 shows an example of the power 

consumption heat map of rooftop units (RTUs) in one of 

the demonstration building a period of about five weeks.  

 
Fig. 5.  Example of building operation power consumption heat map. X-axis 

represents time of the day; Y-axis represents dates in May 2016. 

VII. CONCLUSION 

This paper presents an example of how IoT devices can be 

integrated with an open source BEM systems to enable smart 

building operation. Specifically, BEMOSS, an open source 

BEM platform, is able to run on a SBC such as Odroid to 

control and monitor IoT devices in buildings. This provides a 

low cost and powerful solution for managing building 

operation, thus potentially enabling energy savings in 

commercial buildings for the first time. Test and evaluation of 

deploying BEMOSS on several SBCs show the Odroid XU4 is 

the most suitable embedded system for this application. 

Experience with IoT device integration and system deployment 

is summarized in this paper, which can serve as reference and 

guidance for future research and similar real-world 

implementations. 
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