
In Proc. 2015 IEEE Innovative Smart Grid Technologies Conference (ISGT-ASIA). Bangkok, Thailand. November 4-6, 2015.

An Agent-based Open Source Platform for Building
Energy Management

W. Khamphanchai, M. Pipattanasomporn, M. Kuzlu, and S. Rahman
Bradley Dept. of Electrical and Computer Engineering

Advanced Research Institute – Virginia Tech, Arlington, VA, USA 22203

Abstract—The objective of this paper is to propose a building
energy management (BEM) platform that allows sensing and
control of equipment in small- and medium-sized buildings. The
proposed platform aims to improve energy efficiency, reduce
energy consumption, and foster demand response (DR)
implementation by controlling three major loads in buildings,
including HVAC, lighting and plug loads. In addition, it aims to
offer scalability, robustness, plug and play, open protocol,
interoperability, cost-effectiveness, and local and remote
monitoring. The software architecture, including user
interface, application and data management, operating system
and framework, and connectivity are discussed in this paper
with the special focus on the Multi-agent system (MAS)
development which is the core of the platform. A laboratory test
bed is employed to demonstrate the functionalities of the
proposed software platform.

Index Terms—Building energy management, multi-agent
systems, demand response

I. INTRODUCTION
Multi-agent systems (MAS), featuring the implementation

and utilization of multiple distributed intelligent agents, share
many common characteristics such as being adaptive, self-
aware and semi-autonomous or autonomous. The most
outstanding advantages that MAS embraces are that they can
respond to the external environment rapidly, and can provide
timely solutions based on distributed control with or without
human intervention. For this reason, MAS technology is
recognized as a promising approach for the development of
numerous real-world applications, ranging from e-commerce
to power systems. One of interesting MAS applications is
energy management. When designing an intelligent energy
management system, one needs to take into consideration a
few key features, including efficiency, scalability, robustness
and flexibility, along with the ability to sense the
environment and make decisions. These features make MAS
technology a natural choice, as they are among the many
benefits that MAS can offer.
 This paper targets the application of MAS for developing
an open-source Building Energy Management (BEM)
solution to improve energy efficiency in small- and medium-
sized commercial buildings. While in the United States,

buildings consume over 40% of the total energy consumption
[1][2], one study [3] shows that due to the lack of building
monitoring and control, significant portion of the energy
consumed in buildings is wasted. At present, most BEM
solutions are proprietary, thereby cost-prohibitive and used
mostly in large buildings. BEM are not popular in most
small- and medium-sized buildings due to lack of awareness
of benefits, lack of inexpensive packaged solutions, and
sometimes due to an owner not being a tenant thus finding no
incentive to invest in these systems [3]. However, small- and
medium-sized buildings signify a huge market for BEM
deployment as they represent over 90% of all commercial
buildings in the United States according to U.S. Energy
Information Administration (EIA) [4].
 These issues are the driving factors that inspire us to create
an agent-based open source software platform for BEM
system, to promote the rapid evolution and wide adoption of a
BEM system. The remainder of this paper is organized as
follows. Section II discusses the prior work. Section III
presents the core concept of the proposed platform. The
development of MAS in the platform is elaborated in Section
IV. Section V demonstrates the lab setup and experiments to
showcase the platform functionalities.

II. PRIOR WORK
Agent-based technology, often associated with

“intelligent” and “efficient”, has shed light on traditional
power system applications such as scalability and resilience
issues inherent in the power grid [5][6][7], as well as novel
applications such as home and building energy management
[8]-[13]. Many of these projects are agent-based, but their
demonstrations are limited to simulation or proof-of-concept
implementations that would not operate well in the field [14].

Instead of simulations, our goal is to provide a tangible
solution to BEM with a real and holistic software product that
handles everything between users and physical hardware
devices. At the initial stage, a number of open source agent
development platforms were investigated. The target platform
should be language-agnostic with features of security,
mobility and scalability, and resource management.

One platform is JADE (Java Agent Development
Framework), software framework fully implemented in Java

This work was supported in part by the U.S. Department of Energy under
Grant# DE-EE-0006352.0000.

W. Khamphanchai, M. Pipattanasomporn, M. Kuzlu and S. Rahman are
with Virginia Tech – Advanced Research Institute, Arlington, VA 22203
USA (e-mails: kwarodom@vt.edu, mpipatta@vt.edu, mkuzlu@vt.edu,
srahman@vt.edu).

In Proc. 2015 IEEE Innovative Smart Grid Technologies Conference (ISGT-ASIA). Bangkok, Thailand. November 4-6, 2015.

[15]. The advantage is that developers can easily build a
FIPA-compliant multi-agent system with their set of Java
classes. The disadvantage is limited support on resource
management and security that are important requirements for
our platform.

Another platform is Spade [16], which is a platform based
on the XMPP/Jabber technology and written in the Python
programming language. SPADE is the first to base its roots
on the XMPP technology and is also FIPA-compliant
platform. However, the support for security and resource
management seems to be missing.
There is also AgentScape [17], a distributed agent
middleware. Its design philosophy is “less is more”, meaning
AgentScape provides a minimal but sufficient support for
agent applications. This will cost a lot of extra to develop the
required platform features.

Finally, VOLTTRON™, a distributed agent platform
developed by Pacific Northwest National Laboratory (PNNL)
[14], [18], [19], is chosen to be an agent development
platform for the proposed platform. VOLTTRON™ is
designed to be able to run on small-form-factor computers,
capable of interfacing with hardware devices, maintain
security, manage platform resources, and service for
applications. VOLTTRON™ platform enables the
deployment of intelligent sensors and controllers in
residential/commercial buildings and the smart grid.
Distributed agents using peer-to-peer communications in
VOLTTRON™ cooperate to bring computation closer to data
to enable distributed control decisions and data analysis.
Intelligent agents residing in VOLTTRON™ are designed to
have most of these capabilities: reactive, pro-active, social,
mobility, veracity, benevolence, rationality, and
learning/adaptation.

Built on top of VOLTTRON™, the proposed platform is
designed specifically for energy management in buildings.
The platform greatly simplifies the efforts for seamless
integration of hardware and software applications.

III. THE PROPOSED PLATFORM CONCEPT
The absense of low-cost and user-friendly BEM has

prompted the development of an agent-based software
platform for sensing and control of equipment in small- and
medium- sized buildings. The platform aims to improve
energy efficiency, optimize electricity usage to reduce energy
consumption, and help implement demand response (DR)
programs.

For small- and medium-sized buildings, HVAC heating
and cooling consumption is the dominant end use, followed
by lighting loads, and plug loads [2]. With these loads
combined, they account for almost 75% of all consumption in
buildings.

Apart from possessing the ability to monitor and control
these three major load types, the platform presents a
multitude of features listed as follows: 1) Open source, open
architecture: built upon a robust open source platform, the
platform is ready for manufacturers and engineers to
seamlessly interface their devices and add functionalities. 2)

Plug & play: the platform can automatically discover
supported load controllers, then monitor and control them to
perform the desired functions. 3) Interoperability: the
platform can work with load control devices from different
manufacturers that operate on different communication
technologies (Wi-Fi, Zigbee, Ethernet, Serial), and data
exchange protocols (HTTP/HTTPS, BACnet, Modbus,
Zigbee-API, SEP). 4) Cost effectiveness: the platform is open
source, and it can operate on a low-cost single-board
computer (e.g., PandaBoard [20] or BeagleBone Black [21]).
5) Mobility and Scalability: In a multi-floor and high
occupancy building, multiple single-board computers hosting
the platform can communicate among each other and a master
controller to monitor and control a large number of load
controllers. 6) Local and remote monitoring/control. This
platform allows local and remote monitoring with role-based
access control. 7) Security. Security features including agent
authorization & authentication, encrypted multi-layer
communication and agent validation.

Fig. 1 shows the conceptual implementation of the
proposed platform.

Fig. 1. Conceptual implementation of the proposed platform.

IV. MAS DEVELOPMENT
The proposed platform software architecture, which

comprises the following four layers: user interface (UI) layer,
application and data management layer, operating system and
framework layer, and connectivity layer. The more detail
explanation of these layers can be found in [22].

MAS is a core fundamental of the proposed platform.
With the current implementation, most agents reside in the
operating system and framework layer. In addition, some
agents are devised as applications residing in application and
data management layer. This section devotes to the
discussion of the agent development and its requirements in
both layers.

BEMOSS agents developed in VOLTTRON™ [14] are of
the following types: (1) device discovery agent, (2) control
agent, (3) sensor agent, and (4) cloud agent. Each type of
agents has different functionalities as described below.

1) Device discovery agent is responsible for detecting the
presence of devices in a building, querying their model

In Proc. 2015 IEEE Innovative Smart Grid Technologies Conference (ISGT-ASIA). Bangkok, Thailand. November 4-6, 2015.

numbers, identifying their API interfaces, and launching
control agents to monitor/control discovered devices.

2) Control agent includes thermostat agent, lighting load
agent, plug load agent, VAV agent, and RTU agent. These
agents are responsible for monitoring and control a
thermostat, a lighting load controller, a plug load controller, a
variable air volume (VAV) controller, and a rooftop packaged
unit (RTU) respectively. Each of these agents will be
automatically initiated and launched, if the device discovery
agent discovers a corresponding device with the same type
(e.g., thermostat, plug load, or lighting load etc.). It should be
noted that one control agent is assigned particularly to one
hardware device.

3) Sensor agent communicates with sensors (e.g.,
occupancy sensor, humidity sensor, ambient light sensor, etc.)
and/or power meters to obtain their readings. Similar to
control agents, sensor agents are automatically launched after
the device discovery agent discovers the associated devices.

4) Cloud agent is an agent that communicates with cloud
or web services such as an Open Automated Demand
Response (OpenADR) agent. This agent receives demand
response request from a utility or an aggregator (e.g.,
EnerNOC [23]) through a web service on the cloud. It then
notifies selected agents of a DR event.

This section discusses agent development, including agent
architecture, agent behavior design, agent knowledge
representation, agent ontology, and agent communications. In
addition, linkages between agents and the UI, agents and API
interface, as well as application agents are also discussed as a
guideline for developers wishing to develop agents or
applications residing in the proposed platform.
A. Agent Architecture

Agent architecture is the fundamental mechanism
underlying autonomous software components that support
effective behavior in dynamic, real-world and open
environments. Theoretically, agent architecture can range
from a purely reactive (or behavioral) architecture that reacts
to an environment in a simple stimulus-response fashion to a
more deliberative architecture that reasons about its action
based on Belief Desire Intention (BDI) model. Any agent
architecture can fall into four main categories: Logic based,
Reactive, BDI, and Layered architectures depending on its
required functionalities and capabilities.

Fig. 2 illustrates an example of a thread path of execution
of a generic control agent modeled as a purely reactive agent
that reacts to its environment such as its corresponding UI,
applications, or other agents. A brief discussion of the thread
path of execution is given as follows:
Step 1: Agent acquires its configuration including agent’s
parameter setting (e.g., agent id, agent message
publish/subscribe addresses), device information (e.g., IP
address, API interface), database interfaces.
Step 2: Agent instantiates device object from the loaded API
interface to be able to communicate, monitor, and/or control a
device.

Step 3: Agent initializes itself based on settings from the
previous steps by declaring necessary variables and
connecting with databases and other required services.
Step 4: With the DeviceMonitor behavior (discussed in
Section IV.B), agent periodically gets a current status of a
device by calling a method of an API interface. Then maps
keyword and variables to agent knowledge (explained in
Section IV.D) and update both metadata database and time-
series database with the recent device status.
Step 5: Receiving a message sent by its corresponding UI or
an application, an agent triggers one of its reactive behaviors
(UpdateDeviceStatus, DeviceControl, and IdentifyDevice)
according to a message’s topic and content as described in the
subsequent sections.

Fig. 2. Control agent thread path of execution.

B. Agent Behavior Design
One of the most important steps of designing MAS is to

design agent behaviors. Fundamentally, behaviors of an agent
are its abilities to react to changes in its external environment
as well as its neighboring entities in pursuit of a system
goal(s) or its own goal(s). There are three common types of
agent behaviors: one-shot, cyclic, and generic behaviors.

For example, regarding Fig. 2, a generic control agent
behaviors can be explained as follows:
• DeviceMonitor behavior is implemented as a cyclic

behavior. A control agent will periodically update its
knowledge on a device current status every a specified
device monitoring time.

• UpdateDeviceStatus behavior is implemented as a generic
behavior. It is called upon when other entities (e.g., UI,
application, or another agent) would like to obtain a current
status and setting of a device such as current temperature,
thermostat temperature set point or thermostat mode, etc.

• DeviceControl behavior is implemented as generic
behavior. A control agent will update device control
parameters (e.g., thermostat temperature set point, change
heat/cool mode and fan mode) by sending a control

In Proc. 2015 IEEE Innovative Smart Grid Technologies Conference (ISGT-ASIA). Bangkok, Thailand. November 4-6, 2015.

command using an API interface to change a current
status/setting of a device.

• IdentifyDevice behavior is used in order to visually identify
a device pertaining to a corresponding control agent. This
behavior can be triggered by the UI sending identify device
message to a control agent.

C. Agent Knowledge Representation
Meta data and time-series data are two types of knowledge

that an agent needs to maintain to allow its interaction with
other entities (e.g., the UI), as well as its reasoning processes.
For each agent, there are two required tables to model an agent
knowledge: metadata table and time-series data table.
•The metadata table is used to model agent knowledge with
the data that have no timestamp, e.g., an agent identifier
(AID) or an address of an agent.
•The time-series data table is used to model agent knowledge
with the rest of the time-stamped data.

Table 1 gives example of common metadata of a control
agent that is necessary for agents’ knowledge modeling.

Table 1 Metadata of a control agent

Attributes Data type
 - AID (Agent identifier) AID object

- Address (e.g., IP, MAC) string
- Zone string
- Device type string
- MAC address macaddr

Table 2 gives an example of time-series data of a

thermostat agent that is necessary for agents’ knowledge
modeling.

Table 2 Time-series data of a thermostat agent
Attributes Unit
- temperature Farenheit
- thermostat mode N/A
- fan mode N/A
- heat setpoint Farenheit
- cool setpoint Farenheit
- thermostat state N/A
- fan state N/A

D. Agent with API Interface

An API interface allows an agent to communicate,
monitor and control a device regardless of its communication
technology or data exchange format (protocol-agnostic). In
order to deal with heterogeneous application programming
interface (API) documents offered by different hardware
vendors, the mapping mechanism between agent’s knowledge
and an API interface is provided. This mechanism ensures
that agent’s knowledge obtaining from an API interface
follows the agent ontology used throughout the platform for
interoperability among agents and the other services. The
mapping mechanism of a class API to an agent’s knowledge
is shown in Fig. 3.
E. Agent as an Application

With its ability to communicate with other agents, web
services, cloud services and database interfaces, an agent can

also be developed as an application (App). Examples of
possible applications include demand response, price-based
management, operation monitoring, power and energy
consumption analysis, load control based on local conditions,
alarming notifications, planning and scheduling, data
visualization and web services. Some of these applications
and lab demonstrations are discussed in Section V. The
application development is depicted in Fig. 4.

Fig. 3. Mapping mechanism between agent knowledge and API interface.

Fig. 4. Development of BEMOSS Apps.

There are five essential elements of the application

development architecture.
1) User Interface (UI): UI is deployed to carry out three
activities: activate application, disable application and update
new application setting.
1.1) Activate application: in order to activate application a
message with the following topic and content should be

In Proc. 2015 IEEE Innovative Smart Grid Technologies Conference (ISGT-ASIA). Bangkok, Thailand. November 4-6, 2015.

published on the IEB. This message is picked up by the
APPLauncher agent to start the requested application.

Topic: /ui/appLauncher/AppName/agentid/launch
Message content: {"auth_token": "Token to grant access to
App"}

Where, AppName is a name of an application, agentid is an
agent identification, auth_token is a token to grant access for
other agents or entities to use this application.
1.2) Disable application: in order to disable application, a
message with the following topic and content should be
published on the IEB. This message is picked up by the
APPLauncher agent to disable the specific application.

Topic: /ui/appLauncher/AppName/agentid/disable
Message content: {"auth_token": "Token to grant access to
App"}

1.3) Update application setting: in order to update application
setting, for example update a schedule for brightness setting
of a lighting controller, a message with the following topic
and content should be published on the IEB. This message is
picked up by the corresponding App to update its setting sent
by the UI or other web/cloud services.

Topic: /ui/app/AppName/agentid/update
Message content: {"auth_token": "Token to grant access to
App", "path": "path to the App setting file (JSON format)"}

2) APPLauncher agent: each application is required to
register with the APPLauncher agent so that it can be
launched once a user activates application to use. In addition,
it also serves when a user would like to disable the running
application.
2.1) Activate application: upon receiving a launch App
message from the UI, the AppLaucher agent looks up the
database whether the requested application is validated,
registered, and installed. Then it looks whether the requested
agent is available and running by checking with the Platform
Agent. Finally, it checks whether the provided authorization
token (auth_token) is valid to launch the requested
application. If these conditions are satisfied, the AppLauncher
agent launches the requested application providing
application name (APPName) and agentid. The recently
launched application will start to communicate, monitor,
and/or control the control agent (e.g., thermostat agent,
plugload agent, or lighting agent) using the API between the
application and data management layer and the operating
system and framework layer (App and OS API). Once the
AppLauncher finishes launching the requested App, it replies
to the UI by sending back the following message:

Topic: /appLauncher/ui/AppName/agentid/launch/response
Message content: {"result": "success/failure"}

2.2) Disable application: upon receiving a disable message
from the UI, AppLauncher agent looks up whether the
requested agent (agent_id) is available and running by
checking with the Platform Agent. Finally, it checks whether
the provided auth_token is valid to disable the requested App.
If these conditions are satisfied, the AppLauncher agent
disables the requested application. Once the AppLauncher

finishes disabling the requested application, it replies to the
UI by sending back the following message:

Topic: /appLauncher/ui/AppName/agentid/disable/response
Message content: {"result": "success/failure"}

3) Application (App): App is designed to communicate,
monitor, and/or control agent(s). The steps and requirements
for developing App in the platform are the same as
developing an agent with additional capabilities providing
APIs between layers. After an App is successfully launched
by the AppLauncher agent, it starts to communicate with a
control agent using App and OS API. In order to control a
device, the App needs to publish a message with the
following topic and content on the IEB.

Topic: /app/agent/AppName/agentid/update/
Message content: {"control parameter": "setting"}

For example, to change a mode and temperature set points of
a thermostat according to a user-defined schedule, the
thermostat scheduler App with an agent_id =
'1TH571a4760189f" needs to publish the following message
to IEB.

Topic:
/app/agent/thermostat_scheduler/1TH571a4760189f/update/
Message content: {"mode": "COOL", "setpoint": "72"}

4) Control Agent: upon receiving control message from the
App, a Control agent (e.g., thermostat agent) changes the
setting of a corresponding device (e.g., a thermostat)
accordingly by using the API between OS layer and
Connectivity layer. Once the Control agent successfully
changes device setting, it replies back to the App by
publishing the message with the following topic and content
to IEB.

Topic: /agent/app/AppName/agentid/update/response
Message content: {"result": "success/failure"}

V. APPLICATION DEMONSTRATION
A laboratory has been set up to demonstrate features and

capabilities of the developed platform. It includes a computer
to host the platform and selected hardware devices that use
different communication technologies and data exchange
protocols as shown in Fig. 5. The following list showcases
the applications that have been developed and implemented
in the proposed platform.
• Demand response (DR): DR is an action to reduce electric

power demand in order to reduce peak demand or avoid
system emergencies, generally in response to signals
received from a local utility (e.g., price signal or reliability
signal). This application can be implemented in the
platform using 1) an OpenADR agent receives a DR signal,
2) a planning/scheduling agent to implement DR algorithm
and decide how much load to be shed for each load type,
and 3) control agents to execute the decision (e.g.,
thermostat agent to change temperature set point, lighting
agent to dim the lights).

• Load management: generally building residents have fixed
schedules or certain behavior patterns. Thus it is wise to set
up a load management application to optimize energy

In Proc. 2015 IEEE Innovative Smart Grid Technologies Conference (ISGT-ASIA). Bangkok, Thailand. November 4-6, 2015.

consumption on a daily basis. That requires 1) the user to
set up their preference in UI (e.g., temperature control
schedule, lighting control schedule), 2) a
planning/scheduling agent to process and convert these
messages into control signals and 3) control agents to
execute the schedule.
The proposed platform has also been tested on small-form-

factor computers: PandaBoard [20] and BeagleBone Black
[21]. This is to showcase that the platform can operate on
hardware devices with limited resources in terms of
computation power and memory. Additional devices are
being explored for integration into the proposed platform.

Fig. 5. Lab setup for BEMOSS demonstration.

VI. CONCLUSION
This paper presents an agent-based open-source software

platform for building energy management (BEM), which fills
a long-awaited gap in energy management in small to
medium sized buildings. It is open-source, which allows
developers with different skill sets to work on different
layers; it is cross-standard, enabling vendors to build products
suiting customer needs; it is user-friendly, providing
customers a hassle-free experience with seamless integration
and plug-n-play; it is cost-effective, which can promote its
rapid deployment in the near future. In the long run, the
proposed solution shows promise in opening up demand side
ancillary services markets and creating opportunities for
building owners. This in turn can help accelerate
development of market-ready products like embedded BEM
systems and device controllers for HVAC, lighting and plug
loads. It also enables utilities and independent system
operator (ISOs) to actively leverage DR as a partial substitute
for generation reserve or transmission upgrade.

REFERENCES
[1] U.S. DOE, Buildings Energy Data Book [Online]. Available:

http://buildingsdatabook.eren.doe.gov.
[2] U.S. DOE, Office of Energy Eff. & Renewable Technology (EERE)

[Online]. Available: http://energy.gov/eere/efficiency/buildings.
[3] PNNL, Small- and Medium-Sized Commercial Building Monitoring

and Controls Needs: A Scoping Study, 2012 [Online]. Available:
http://www.pnnl.gov/main/publications/external/technical_reports/PNN
L-22169.pdf.

[4] U.S. EIA, Commercial Building Energy Consumption Survey (CBECS)
[Online]. Available:
http://www.eia.gov/consumption/commercial/reports/2012/preliminary/
index.cfm.

[5] G.T. Heydt, C.C. Liu, A.G. Phadke, and V. Vittal, “Solution for the
crisis in electric power supply,” IEEE Computer Applications in Power,
vol.14, no.3, pp.22-30, Jul. 2001.

[6] S. McArthur, E. Davidson, V. Catterson, A. Dimeas, N. Hatziargyriou,
F. Ponci, and T. Funabashi, “Multi-agent systems for power
engineering applications—Part I: Concepts, approaches, and technical
challenges,” IEEE Transactions on Power Systems, vol.22, no.4,
pp.1743-1752, Nov. 2007.

[7] S. McArthur, E. Davidson, J. Hossack, and J. McDonald, “Automating
power system fault diagnosis through multi-agent system technology,”
in Proc. 37th Annual Hawaii International Conf. on System
Sciences, vol., no., pp.5-8, Jan. 2004.

[8] Z. Peng, S. Suryanarayanan, M.G. Simoes, "An Energy Management
System for Building Structures Using a Multi-Agent Decision-Making
Control Methodology," IEEE Industry Applications Society Annual
Meeting (IAS), vol., no., pp.1-8, 3-7 Oct 2010.

[9] B. Asare-Bediako, W.L. Kling, P.F. Ribeiro, "Multi-agent system
architecture for smart home energy management and optimization,"
IEEE Innovative Smart Grid Technologies Europe (ISGT EUROPE),
vol., no., pp.1-5, 6-9 Oct 2013.

[10] K. Mets, M. Strobbe, T. Verschueren, T. Roelens, F. De Turck, and C.
Develder, "Distributed multi-agent algorithm for residential energy
management in smart grids," IEEE Network Operations and
Management Symposium (NOMS), vol., no., pp.435-443, 16-20 Apr.
2012.

[11] Y. Rui, and W. Lingfeng, "Multi-agent based energy and comfort
management in a building environment considering behaviors of
occupants," IEEE Power and Energy Society General Meeting, vol.,
no., pp.1-7, 22-26 July 2012.

[12] S.D. Smitha, and F.M. Chacko, "Intelligent energy management in
smart and sustainable buildings with multi-agent control system,"
International Multi-Conference on Automation, Computing,
Communication, Control and Compressed Sensing (iMac4s), vol., no.,
pp.190-195, 22-23 March 2013.

[13] M.G. Simoes, S. Bhattarai, "Multi agent based energy management
control for commercial buildings," IEEE Industry Applications Society
Annual Meeting (IAS), vol., no., pp.1-6, 9-13 Oct. 2011.

[14] B. Akyol, J. Haack, S. Ciraci, B. Carpenter, M. Vlachopoulou and C.
Tews “VOLTTRON: an agent execution platform for the electric power
system,” in Proc. 3rd International Workshop on Agent Technologies
for Energy Systems, Valencia, Spain, June 2012.

[15] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE: A FIPA2000
compliant agent development environment,” in Proc. Fifth
International Joint Conference on Autonomous Agents and Multigent
Systems (AAMAS), Hakodate, Japan, 8-12 May 2006.

[16] Spade2 - Smart Python Agent Development Environment [Online].
Available: https://code.google.com/p/spade2/.

[17] AgentScape - Distributed Agent Middleware [Online]. Available:
http://www.agentscape.org.

[18] B. Akyol, J. Haack, C. Tews, B. Carpenter, A. Kulkarni, and P. Craig
“An Intelligent Sensor Framework for the Power Grid.” ASME 2011
5th International Conference on Energy Sustainability, Washington,
DC, USA, August 7–10 2011.

[19] J. Haack, B. Akyol, B. Carpenter, C. Tews, and L. Foglesong
“VOLTTRON: An agent platform for smart grid.” in Proc. 4th
International Workshop on Agent Technologies for Energy Systems,
Minnesota, USA, May 10, 2013.

[20] PandaBoard [Online]. Available: http://pandaboard.org.
[21] BeagleBone Black [Online]. Available: http://beagleboard.org/black.
[22] W. Khamphanchai, A. Saha, K. Rathinavel, M. Kuzlu, M.

Pipattanasomporn, S. Rahman, B. Akyol, and J. Haack, "Conceptual
architecture of building energy management open source software
(BEMOSS)," IEEE PES Innovative Smart Grid Technologies
Conference Europe (ISGT-Europe), vol., no., pp.1-6, 12-15 Oct. 2014.

[23] EnerNOC Open Source for an Open Grid [Online]. Available:
http://open.enernoc.com/.

In Proc. 2015 IEEE Innovative Smart Grid Technologies Conference (ISGT-ASIA). Bangkok, Thailand. November 4-6, 2015.

